
How Spotify builds AI
with and for the
open-source ecosystem

Mounia Lalmas

Open Source AI Summit, Abu Dhabi, December 2025

“Open-source AI refers to AI systems
whose models, code, or knowledge
artifacts are shared openly, such as
open-weight models, datasets, or
documentation, so others can understand,
reuse, or adapt them in their own work.”

There are several definitions; here is the one guiding this talk:

Outline

Spotify & Our
Approach to AI

Who we are
and how AI helps

us scale

Engineering
Foundations

Open-source platform
for AI-enabled

engineering

Product & AI
Innovation

Teaching a model
to “speak Spotify”

Looking
Ahead

Multi-angle
open-source AI

Spotify & Our
Approach to AI
Who we are and how AI helps us scale

Our mission at Spotify
To unlock the potential of human creativity —

by giving a million artists the opportunity to live
off their work, and billions of fans the opportunity

to enjoy and be inspired by it.

713M+
Active users

184
Markets

100M+
Music tracks

500K+
Audiobooks

7M+
Podcast titles

480K+
Video podcasts

Powered by

■ Engineering foundations

■ Large-scale data and model pipelines

■ Open ecosystems

Elevating the
Spotify experience

Across surfaces and formats at global scale –
music, podcasts, audiobooks.

Open Source AI at Spotify
Spotify builds with and contributes to open source ecosystems, sharing platforms,
research, and tools, and adopting open-weight models to accelerate innovation.

Engineering
Foundations

Product &
AI Innovation

Across both, we engage through publications, standards, collaboration,
and participation in open source ecosystems.

Sharing our open-source platforms (like Backstage), which enable global
communities to build better developer experiences.

Using open-weight LLMs to build generative recommender systems,
and sharing methods, findings, and best practices.

Engineering
Foundations
Open-source platform for AI-enabled engineering

Developer Platforms for Scale & Velocity

Unify
documentation,

tools, and service
metadata in
one place.

01 02 03
Reduce cognitive

load and streamline
how teams build,

deploy, and operate
software.

Provide the
structured

environment that
AI systems and
agents rely on

to work effectively.

Backstage

Unify

Scale

Open
Source

Brings tools, documentation, service metadata,
APIs and standards into one place

Reduces cognitive load and gives teams a
consistent way to build and operate software

Built at Spotify and open-sourced so the
industry benefits

Spotify’s Open Developer Platform

Backstage at a Glance

Software Catalog:
Single source of truth for
services, dependencies, data
assets, websites, ownership,
and domains.

TechDocs:
Documentation-as-code
integrated directly with the
Catalog and owned by teams.

Scaffolder / Golden
Paths: Reproducible
templates for creating new
services, pipelines, and
infrastructure.

Plugins & Extensions:
Integrations for CI/CD, cloud
resources, compliance,
monitoring, experimentation,
and more.

Open-Source
Adoption

Core Platform
Components

Open-sourced in 2020 and
donated to the CNCF.

Grown to 3,400+ adopting
companies across
industries.

Community now includes
1,600+ contributors and
230+ plugins, with tens of
thousands of contributions
each year.

Why Backstage Matters
in the AI Era

Backstage gives Spotify a structured, machine-readable map of
our software ecosystem, similar in spirit to how foundation
models learn structured representations of language and data.

By unifying service metadata, documentation, ownership,
dependencies, and workflows, Backstage enables AI to:

■ Reason about engineering systems

■ Answer questions accurately with up-to-date context

■ Support discovery across services, owners, docs,
and patterns

■ Take safe, meaningful actions through standardized
workflows and guardrails

Backstage provides the knowledge foundation for AI-driven
engineering, giving both humans and AI assistants a shared,
reliable way to understand and act.

AiKA: Spotify’s AI Knowledge Assistant

Thanks to Backstage’s structured engineering knowledge, we built AiKA, an AI
Knowledge Assistant that helps engineers understand and navigate Spotify systems.

What is AiKA
■ A unified AI entry point for understanding and navigating Spotify

engineering environment

■ A natural-language layer built on top of our metadata, documentation,
ownership, dependencies, and workflows

■ A foundation for future agentic capabilities in engineering

How AiKA works
■ Uses an LLM as the reasoning engine

■ Retrieves structured knowledge from Backstage and connected sources

■ Uses Model Context Protocol (MCP) to invoke safe, predefined actions

■ Runs on top of Backstage metadata and workflows for reliability
and accuracy

From AI Assistance to Agentic Workflows

■ Better metadata
→ better AI assistance

■ Better AI outputs
→ better engineering decisions

■ Teams update docs/metadata
→ AI improves

■ Creates a compounding
productivity loop

■ AI assists with tasks like service
creation, dependency updates,
migrations

■ MCP enables safe, predefined
actions

■ Scaffolder Workflows connect
tools and actions to AiKA

■ Lays the groundwork for future
AI agents

Human–AI Collaboration Flywheel Toward Agentic Workflows

Open Foundations for
AI-Enabled Engineering

Backstage as a platform knowledge layer

■ Backstage provides the structured metadata,
documentation, ownership, and workflows that
AI assistants and future agents depend on.

■ It continues to evolve as both an internal platform and
an industry-supported project used by thousands of
companies.

AI-powered engineering

■ With Backstage as a consistent system of record,
AI can understand internal systems, trigger workflows
safely, and support engineers in maintaining and
evolving services more efficiently.

Product & AI
Innovation
Teaching a model to “speak” Spotify

At Spotify personalization is about
connecting the things listeners want

with the things creators make.

Entertained

Focused

Thrilled

Motivated

Sleepy

Connected

Relaxed

Hip Hop

Sports Podcast

Daily Mix

Scenic Route

This is David Bowie

Coding Mode

Chill Mix

Evolution of personalization

■ Hand-picked playlists

■ Like what you’d hear
from a friend or editor

■ Example: Indie Chill
(human-made)

Human Curated Predictive Generative
■ Machine learning

predicts and ranks what
you might like

■ Based on listening
history + behavior

■ Example: Discover
Weekly

■ Recommendations
adapt to mood, intent,
and conversational input

■ Produces on-demand
curated sets tailored to
each prompt

■ Example: “Recommend
me some podcasts to
go deeper into Spotify's
open source work”

Why LLMs Matter for
Personalization

LLMs unlock a new generation of personalized
experiences. They bring:

■ World knowledge

■ Reasoning ability

■ Natural-language understanding

■ Generative capability

This enables systems that can:

■ Understand moods, contexts, intents

■ Explain or justify recommendations

■ Power more dynamic and conversational experiences

Why Domain Adaptation &
Open-Weight Models
Why open-weight LLMs?

■ Flexibility to run and tune models ourselves

■ Transparent architectures

■ Deep integration into Spotify systems

But open-weight LLMs do not know:

■ Full breadth and depth of Spotify’s catalog

■ Our user preferences and listening patterns

■ Our content relationships, semantics, and metadata

■ How to generate or rank Spotify-specific items

So we adapt them to Spotify’s domain

We teach LLMs to “speak Spotify” by grounding them in our
catalog, interactions, and semantics, enabling them to generate,
understand, and reason over Spotify content.

Using Open-Weight Models for
Generative Recommendations

Teach models Spotify’s
items, metadata,
and relationships

Adapt to how listeners
explore and engage

with content

Tune for discovery,
satisfaction,

and engagement

Ground in
our catalog

Align with
behavior

Optimize
for goals

Open-weight LLMs give us world knowledge and flexible architectures.
Domain adaptation lets us turn them into models that truly understand Spotify:

Recommenders use embeddings. LLMs use
tokens. They also “speak” different formats.

Modern
recommender

systems

LLMs

The mismatch

Represent users & items as dense continuous
vector embeddings learned from interaction data

Operate on discrete token sequences tied to
a fixed vocabulary with learned embeddings

These distinct data representations
are not directly compatible

LLMs need a way to understand Spotify’s
catalog, Semantic IDs make this possible.

*Recommender Systems with Generative Retrieval. NeurIPS 2023
Better Generalization with Semantic IDs: A Case Study in Ranking for Recommendations. RecSys 2024

The problem:
Atomic item IDs

The solution:
Semantic IDs* Why it works:

■ Preserves semantic relationships

■ Improves scalability, massive
reduction in vocabulary size

■ Generalizes to unseen items:
handle cold-start

■ Convert item embeddings into
short token sequences

■ Similar items share token
components

■ Large and sparse vocabulary

■ No semantic meaning (e.g.,
track_491)

■ Cold-start problem

Atomic IDs (Millions)

Semantic Tokens
(Thousands)

Reusable Components

How we adapt open-weight models
to Spotify using Semantic IDs

Original Vocab [0-128000] SIDs expansion [128001-132000]

Example of alignment task:

Make the model read, reason about, and
generate using Semantic IDs as naturally
as text.

Target output:
"How yoga helped me
slow down and focus"

Semantic ID:
[242, 42, 452, 355]

1. Vocabulary expansion
Expand original LLM vocabulary with
Semantic IDs.

2. Alignment Phase (LLM Frozen)
Train Semantic ID token embeddings to align
with language.

3. Fine-tuning Phase (LLM Unfrozen)
Train on tasks involving Semantic IDs e.g.
next-item prediction.

Example of fine-tuning task:

Target output:
[242, 42,..], … [3, 121,..], [2, 11,..]

Semantic ID sequence:
[242, 42,..], … [3, 121,..], ?

How our domain-adapted
model generates
recommendations

■ Receives a prompt mixing natural
language and Semantic IDs.

■ Predicts next most likely tokens,
including Semantic IDs for catalog
items.

■ Outputs may contain Semantic IDs,
optionally mixed with natural
language.

Language handles reasoning; Semantic
IDs provide grounding in Spotify’s catalog.

Domain adapted
open-weights

model

100 20 31 → spotify:track:4fixebDZAVTo

Prompt:

Response:

“I want to listen to a song similar to [100][20][23] for my
morning commute. Any suggestions?"

“if you liked [100][20][23], I am sure you will love the
hypnotic dream pop vibes of [100][20][31] to start off
your day. Let me know what you think!”

You are an expert in podcast
recommendations.

The user is from country: 'IT', age:
'36' and speaks the following
languages: `IT, EN`.

Here are the user’s historical
interactions, ordered by timestamp:
`Semantic ID [26, 21, 2, 3],Semantic
ID [26, 2, 44, 22],Semantic ID [543,
1, 3, 4]`.

Your task is to recommend the next
item the user would like to stream.

Example for podcast recommendations
A prompt is created using user history,

metadata and editorial hypotheses

Our model generates the next
item as a Semantic ID, which
is mapped to a podcast URI

User opens their
podcast feed

programmed to rank at
position one the mostly

likely podcast they
would want to listen to

spotify:episode:GTdiaotf
635dtggu4536

Semantic ID [532, 13, 345, 1]Semantic ID [532,13,345,1]

Domain adapted
open-weights

model

Key results enabled by Semantic IDs

new-show
discovery

for Artist → Playlist
Title generation

Hit Rate for Artist, Episode
and Audiobook Search

for Episode Discovery Gain from
multi-task training■ Stronger performance on broad-intent queries

■ Clearer, more fluent explanations for recommendations

(latest AB test results)

+8.8% +3.5%
re-engagement

+173% BLEU +108%, +32% and +7%

+16% Hit Rate Better natural
language behaviour:

+22%

Product Foundations for
AI-Driven Personalization

Adapted open-weight models

■ We build on open-weight LLMs as our flexible,
world-knowledge foundation.

■ We adapt them to Spotify’s catalog and behavior
patterns by teaching them to “speak Spotify”
through Semantic IDs.

Giving back to the community

■ Even as we leverage open-weight models, we share our
recipes, methods, and results with practitioners and
researchers, contributing back to the broader ecosystem.

Teaching Large Language Models to Speak Spotify:
How Semantic IDs Enable Personalization

Contextualized Recommendations Through Personalized
Narratives using LLMs | Spotify Research

https://research.atspotify.com/2025/11/teaching-large-language-models-to-speak-spotify-how-semantic-ids-enable
https://research.atspotify.com/2025/11/teaching-large-language-models-to-speak-spotify-how-semantic-ids-enable
https://research.atspotify.com/2024/12/contextualized-recommendations-through-personalized-narratives-using-llms
https://research.atspotify.com/2024/12/contextualized-recommendations-through-personalized-narratives-using-llms

Looking Ahead
Multi-angle open-source AI

Open-source AI at Spotify

01 02 03 04
Open-source

engineering platforms
Adapted open-weight

models for product
innovation

Sharing back with
the ecosystem

A multi-angle
approach to

open-source AI

Backstage provides an
openly shared, structured

knowledge layer that
powers AI assistance and
future AI agents for safe,

efficient engineering.

We build on open-weight
LLMs and adapt them
to understand Spotify’s
catalog and behavior,

grounding them
using Semantic IDs,
domain signals, and
adaptation methods.

As we build with open
ecosystems, we contribute
back: publishing research,
open-sourcing methods,

sharing findings, and
collaborating with industry

and academia.

Open platforms power AI
for development, adapted

models power AI for
product experiences,

together enabling AI that
understands our systems

and our catalog.

Thank You
backstage.spotify.com

spotify.github.io

research.atspotify.com

