
How Spotify builds AI 
with and for the 
open-source ecosystem

Mounia Lalmas

Open Source AI Summit, Abu Dhabi, December 2025



“Open-source AI refers to AI systems 
whose models, code, or knowledge 
artifacts are shared openly, such as 
open-weight models, datasets, or 
documentation, so others can understand, 
reuse, or adapt them in their own work.”

There are several definitions; here is the one guiding this talk:
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Spotify & Our 
Approach to AI
Who we are and how AI helps us scale



Our mission at Spotify
To unlock the potential of human creativity — 

by giving a million artists the opportunity to live 
off their work, and billions of fans the opportunity 

to enjoy and be inspired by it.



713M+
Active users

184
Markets

100M+
Music tracks

500K+
Audiobooks

7M+
Podcast titles

480K+
Video podcasts



Powered by 

■ Engineering foundations

■ Large-scale data and model pipelines

■ Open ecosystems 

Elevating the 
Spotify experience

 

 

 

Across surfaces and formats at global scale – 
music, podcasts, audiobooks.



Open Source AI at Spotify
Spotify builds with and contributes to open source ecosystems, sharing platforms, 
research, and tools, and adopting open-weight models to accelerate innovation.

Engineering 
Foundations

Product &
AI Innovation

Across both, we engage through publications, standards, collaboration, 
and participation in open source ecosystems.

Sharing our open-source platforms (like Backstage), which enable global 
communities to build better developer experiences.

Using open-weight LLMs to build generative recommender systems,
and sharing methods, findings, and best practices.



Engineering 
Foundations
Open-source platform for AI-enabled engineering



Developer Platforms for Scale & Velocity

Unify 
documentation, 

tools, and service 
metadata in 
one place.

01 02 03
Reduce cognitive 

load and streamline 
how teams build, 

deploy, and operate 
software.

Provide the 
structured 

environment that 
AI systems and 
agents rely on 

to work effectively.



Backstage 

Unify

Scale

Open 
Source

Brings tools, documentation, service metadata, 
APIs and standards into one place

Reduces cognitive load and gives teams a 
consistent way to build and operate software

Built at Spotify and open-sourced so the 
industry benefits

Spotify’s Open Developer Platform



Backstage at a Glance

Software Catalog:            
Single source of truth for 
services, dependencies, data 
assets, websites, ownership, 
and domains.

TechDocs: 
Documentation-as-code 
integrated directly with the 
Catalog and owned by teams.

Scaffolder / Golden 
Paths: Reproducible 
templates for creating new 
services, pipelines, and 
infrastructure.

Plugins & Extensions: 
Integrations for CI/CD, cloud 
resources, compliance, 
monitoring, experimentation, 
and more.

Open-Source 
Adoption

Core Platform 
Components

Open-sourced in 2020 and 
donated to the CNCF.

Grown to 3,400+ adopting 
companies across 
industries.

Community now includes 
1,600+ contributors and 
230+ plugins, with tens of 
thousands of contributions 
each year.



Why Backstage Matters 
in the AI Era

Backstage gives Spotify a structured, machine-readable map of 
our software ecosystem, similar in spirit to how foundation 
models learn structured representations of language and data.

By unifying service metadata, documentation, ownership, 
dependencies, and workflows, Backstage enables AI to:

■ Reason about engineering systems

■ Answer questions accurately with up-to-date context

■ Support discovery across services, owners, docs,
and patterns

■ Take safe, meaningful actions through standardized 
workflows and guardrails

Backstage provides the knowledge foundation for AI-driven 
engineering, giving both humans and AI assistants a shared,
reliable way to understand and act.



AiKA: Spotify’s AI Knowledge Assistant

Thanks to Backstage’s structured engineering knowledge, we built AiKA, an AI 
Knowledge Assistant that helps engineers understand and navigate Spotify systems.

What is AiKA
■ A unified AI entry point for understanding and navigating Spotify 

engineering environment

■ A natural-language layer built on top of our metadata, documentation, 
ownership, dependencies, and workflows

■ A foundation for future agentic capabilities in engineering

How AiKA works
■ Uses an LLM as the reasoning engine

■ Retrieves structured knowledge from Backstage and connected sources

■ Uses Model Context Protocol (MCP) to invoke safe, predefined actions

■ Runs on top of Backstage metadata and workflows for reliability
and accuracy



From AI Assistance to Agentic Workflows

■ Better metadata 
→ better AI assistance

■ Better AI outputs 
→ better engineering decisions

■ Teams update docs/metadata 
→ AI improves

■ Creates a compounding 
productivity loop

■ AI assists with tasks like service 
creation, dependency updates, 
migrations

■ MCP enables safe, predefined 
actions

■ Scaffolder Workflows connect 
tools and actions to AiKA

■ Lays the groundwork for future 
AI agents

Human–AI Collaboration Flywheel Toward Agentic Workflows



Open Foundations for 
AI-Enabled Engineering

Backstage as a platform knowledge layer

■ Backstage provides the structured metadata, 
documentation, ownership, and workflows that 
AI assistants and future agents depend on. 

■ It continues to evolve as both an internal platform and 
an industry-supported project used by thousands of 
companies.

AI-powered engineering

■ With Backstage as a consistent system of record,
AI can understand internal systems, trigger workflows 
safely, and support engineers in maintaining and 
evolving services more efficiently.



Product & AI 
Innovation
Teaching a model to “speak” Spotify



At Spotify personalization is about 
connecting the things listeners want 

with the things creators make.

Entertained

Focused

Thrilled

Motivated

Sleepy

Connected

Relaxed

Hip Hop

Sports Podcast

Daily Mix

Scenic Route

This is David Bowie

Coding Mode

Chill Mix



Evolution of personalization

■ Hand-picked playlists

■ Like what you’d hear 
from a friend or editor

■ Example: Indie Chill 
(human-made)

Human Curated Predictive Generative
■ Machine learning 

predicts and ranks what 
you might like

■ Based on listening 
history + behavior

■ Example: Discover 
Weekly

■ Recommendations 
adapt to mood, intent, 
and conversational input

■ Produces on-demand 
curated sets tailored to 
each prompt

■ Example: “Recommend 
me some podcasts to 
go deeper into Spotify's 
open source work”



Why LLMs Matter for 
Personalization

LLMs unlock a new generation of personalized 
experiences. They bring:

■ World knowledge

■ Reasoning ability

■ Natural-language understanding

■ Generative capability

This enables systems that can:

■ Understand moods, contexts, intents

■ Explain or justify recommendations

■ Power more dynamic and conversational experiences



Why Domain Adaptation & 
Open-Weight Models
Why open-weight LLMs?

■ Flexibility to run and tune models ourselves

■ Transparent architectures

■ Deep integration into Spotify systems

But open-weight LLMs do not know:

■ Full breadth and depth of Spotify’s catalog

■ Our user preferences and listening patterns

■ Our content relationships, semantics, and metadata

■ How to generate or rank Spotify-specific items

So we adapt them to Spotify’s domain

We teach LLMs to “speak Spotify” by grounding them in our 
catalog, interactions, and semantics, enabling them to generate, 
understand, and reason over Spotify content.



Using Open-Weight Models for 
Generative Recommendations

Teach models Spotify’s 
items, metadata,
and relationships

Adapt to how listeners 
explore and engage 

with content

Tune for discovery, 
satisfaction,

and engagement

Ground in
our catalog

Align with 
behavior

Optimize
for goals

Open-weight LLMs give us world knowledge and flexible architectures.
Domain adaptation lets us turn them into models that truly understand Spotify:



Recommenders use embeddings. LLMs use 
tokens. They also “speak” different formats.

Modern 
recommender 

systems

LLMs

The mismatch

Represent users & items as dense continuous 
vector embeddings learned from interaction data

Operate on discrete token sequences tied to 
a fixed vocabulary with learned embeddings

These distinct data representations 
are not directly compatible



LLMs need a way to understand Spotify’s 
catalog, Semantic IDs make this possible.

*Recommender Systems with Generative Retrieval. NeurIPS 2023
Better Generalization with Semantic IDs: A Case Study in Ranking for Recommendations. RecSys 2024

The problem: 
Atomic item IDs

The solution: 
Semantic IDs* Why it works:

■ Preserves semantic relationships

■ Improves scalability, massive 
reduction in vocabulary size

■ Generalizes to unseen items: 
handle cold-start

■ Convert item embeddings into 
short token sequences

■ Similar items share token 
components 

■ Large and sparse vocabulary

■ No semantic meaning (e.g., 
track_491)

■ Cold-start problem

Atomic IDs (Millions)

Semantic Tokens
(Thousands)

Reusable Components



How we adapt open-weight models 
to Spotify using Semantic IDs

Original Vocab [0-128000] SIDs expansion [128001-132000]

Example of alignment task: 

Make the model read, reason about, and 
generate using Semantic IDs as naturally 
as text.

Target output: 
"How yoga helped me 
slow down and focus"

Semantic ID:
[242, 42, 452, 355]

1. Vocabulary expansion
Expand original LLM vocabulary with 
Semantic IDs.

2. Alignment Phase (LLM Frozen)
Train Semantic ID token embeddings to align 
with language.  

3. Fine-tuning Phase (LLM Unfrozen)
Train on tasks involving Semantic IDs e.g. 
next-item prediction.

Example of fine-tuning task: 

Target output: 
[242, 42,..], … [3, 121,..], [2, 11,..] 

Semantic ID sequence:
[242, 42,..], … [3, 121,..], ?



How our domain-adapted 
model generates 
recommendations

■ Receives a prompt mixing natural 
language and Semantic IDs.

■ Predicts next most likely tokens, 
including Semantic IDs for catalog 
items.

■ Outputs may contain Semantic IDs, 
optionally mixed with natural 
language.

Language handles reasoning; Semantic 
IDs provide grounding in Spotify’s catalog.

Domain adapted 
open-weights 

model

100 20 31 → spotify:track:4fixebDZAVTo

Prompt:

Response:

“I want to listen to a song similar to [100][20][23] for my 
morning commute. Any suggestions?" 

“if you liked [100][20][23], I am sure you will love the 
hypnotic dream pop vibes of [100][20][31] to start off 
your day. Let me know what you think!”



You are an expert in podcast 
recommendations. 

The user is from country: 'IT', age: 
'36' and speaks the following 
languages: `IT, EN`.

Here are the user’s historical 
interactions, ordered by timestamp: 
`Semantic ID [26, 21, 2, 3],Semantic 
ID [26, 2, 44, 22],Semantic ID [543, 
1, 3, 4]`. 

Your task is to recommend the next 
item the user would like to stream.

Example for podcast recommendations
A prompt is created using user history, 

metadata and editorial hypotheses

Our model generates the next 
item as a Semantic ID, which 
is mapped to a podcast URI

User opens their 
podcast feed 

programmed to rank at 
position one the mostly 

likely podcast they 
would want to listen to

spotify:episode:GTdiaotf 
635dtggu4536

Semantic ID [532, 13, 345, 1]Semantic ID [532,13,345,1]

Domain adapted 
open-weights 

model



Key results enabled by Semantic IDs

new-show 
discovery

for Artist → Playlist 
Title generation

Hit Rate for Artist, Episode 
and Audiobook Search

for Episode Discovery Gain from 
multi-task training■ Stronger performance on broad-intent queries

■ Clearer, more fluent explanations for recommendations

(latest AB test results)

+8.8% +3.5%
re-engagement

+173% BLEU +108%, +32% and +7%

+16% Hit Rate Better natural 
language behaviour:

+22%



Product Foundations for 
AI-Driven Personalization

Adapted open-weight models

■ We build on open-weight LLMs as our flexible, 
world-knowledge foundation.

■ We adapt them to Spotify’s catalog and behavior
patterns by teaching them to “speak Spotify”
through Semantic IDs.

Giving back to the community

■ Even as we leverage open-weight models, we share our 
recipes, methods, and results with practitioners and 
researchers, contributing back to the broader ecosystem.

Teaching Large Language Models to Speak Spotify: 
How Semantic IDs Enable Personalization

Contextualized Recommendations Through Personalized 
Narratives using LLMs | Spotify Research

https://research.atspotify.com/2025/11/teaching-large-language-models-to-speak-spotify-how-semantic-ids-enable
https://research.atspotify.com/2025/11/teaching-large-language-models-to-speak-spotify-how-semantic-ids-enable
https://research.atspotify.com/2024/12/contextualized-recommendations-through-personalized-narratives-using-llms
https://research.atspotify.com/2024/12/contextualized-recommendations-through-personalized-narratives-using-llms


Looking Ahead
Multi-angle open-source AI



Open-source AI at Spotify

01 02 03 04
Open-source 

engineering platforms
Adapted open-weight 

models for product 
innovation

Sharing back with
the ecosystem

A multi-angle 
approach to 

open-source AI

Backstage provides an 
openly shared, structured 

knowledge layer that 
powers AI assistance and 
future AI agents for safe, 

efficient engineering.

We build on open-weight 
LLMs and adapt them
to understand Spotify’s 
catalog and behavior, 

grounding them
using Semantic IDs,
domain signals, and 
adaptation methods.

As we build with open 
ecosystems, we contribute 
back: publishing research, 
open-sourcing methods, 

sharing findings, and 
collaborating with industry 

and academia.

Open platforms power AI 
for development, adapted 

models power AI for 
product experiences, 

together enabling AI that 
understands our systems 

and our catalog.



Thank You
backstage.spotify.com

spotify.github.io

research.atspotify.com


