©R&D

Open Source Al Summit, Abu Dhabi, December 2025

How Spotify builds Al
with and for the

open-source ecosystem

Mounia Lalmas

There are several definitions; here is the one guiding this talk:

“Open-source Al refers to Al systems
whose models, code, or knowledge
artifacts are shared openly, such as
open-weight models, datasets, or
documentation, so others can understand,
reuse, or adapt them in their own work.”

Outline

Spotify & Our
Approach to Al

Who we are
and how Al helps
us scale

Engineering
Foundations

Open-source platform
for Al-enabled
engineering

Product & Al
Innovation

Teaching a model
to “speak Spotify”

Q

Looking
Ahead

Multi-angle
open-source Al

Spotify & Our
Approach to Al

Our mission at Spotify

To unlock the potential of human creativity —
by giving a million artists the opportunity to live
off their work, and billions of fans the opportunity
to enjoy and be inspired by it.

71_3M+

5100], €5

Audiobooks

184

Markets

L

TM+

Podcast titles

10_0M+

480K+

Video podcasts

Elevating the
Spotify experience

Across surfaces and formats at global scale -
music, podcasts, audiobooks.

Powered by
m Engineering foundations
m Large-scale data and model pipelines

m Open ecosystems

Open Source Al at Spotify

Spotify builds with and contributes to open source ecosystems, sharing platforms,
research, and tools, and adopting open-weight models to accelerate innovation.

Engineering Sharing our open-source platforms (like Backstage), which enable global
Foundations communities to build better developer experiences.

Product & Using open-weight LLMs to build generative recommender systems,
Al Innovation and sharing methods, findings, and best practices.

Across both, we engage through publications, standards, collaboration,
and patrticipation in open source ecosystems.

Engineering
Foundations

Open-source platform for Al-enabled engineering

Developer Platforms for Scale & Velocity

01

Unify
documentation,

tools, and service
metadata in
one place.

02

Reduce cognitive
load and streamline
how teams build,
deploy, and operate
software.

03

Provide the
structured
environment that
Al systems and
agents rely on
to work effectively.

Backstage

Spotify’s Open Developer Platform

Unify Brings tools, documentation, service metadata,
APls and standards into one place

Reduces cognitive load and gives teams a

Scale consistent way to build and operate software

Open Built at Spotify and open-sourced so the
Source industry benefits

Backstage at a Glance

Core Platform
Components

Open-Source
Adoption

Software Catalog:
Single source of truth for
services, dependencies, data
assets, websites, ownership,
and domains.

Scaffolder / Golden

Paths: Reproducible
templates for creating new
services, pipelines, and
infrastructure.

TechDocs:
Documentation-as-code
integrated directly with the
Catalog and owned by teams.

Plugins & Extensions:

Integrations for CI/CD, cloud

resources, compliance,
monitoring, experimentation,
and more.

-

Open-sourced in 2020 and
donated to the CNCF.

Grown to 3,400+ adopting
companies across
industries.

Community now includes
1,600+ contributors and
230+ plugins, with tens of
thousands of contributions
each year.

Why Backstage Matters
in the Al Era

Backstage gives Spotify a structured, machine-readable map of
our software ecosystem, similar in spirit to how foundation
models learn structured representations of language and data.

By unifying service metadata, documentation, ownership,
dependencies, and workflows, Backstage enables Al to:

Reason about engineering systems
Answer questions accurately with up-to-date context

Support discovery across services, owners, docs,
and patterns

Take safe, meaningful actions through standardized
workflows and guardrails

Backstage provides the knowledge foundation for Al-driven
engineering, giving both humans and Al assistants a shared,
reliable way to understand and act.

AiKA: Spotify’s Al Knowledge Assistant

© Spotify for Backstage

Thanks to Backstage’s structured engineering knowledge, we built AiKA, an Al
Knowledge Assistant that helps engineers understand and navigate Spotify systems.

What is AiKA

A unified Al entry point for understanding and navigating Spotify
engineering environment

A natural-language layer built on top of our metadata, documentation,
ownership, dependencies, and workflows

A foundation for future agentic capabilities in engineering

How AiKA works

Uses an LLM as the reasoning engine
Retrieves structured knowledge from Backstage and connected sources
Uses Model Context Protocol (MCP) to invoke safe, predefined actions

Runs on top of Backstage metadata and workflows for reliability
and accuracy

From Al Assistance to Agentic Workflows

Human-Al Collaboration Flywheel Toward Agentic Workflows
Better metadata Al assists with tasks like service
— better Al assistance creation, dependency updates,
migrations

Better Al outputs
— better engineering decisions MCP enables safe, predefined

actions
Teams update docs/metadata

— Al improves Scaffolder Workflows connect

: tools and actions to AiKA
Creates a compounding

productivity loop Lays the groundwork for future
Al agents

—

Open Foundations for
Al-Enabled Engineering

Backstage as a platform knowledge layer

Backstage provides the structured metadata,
documentation, ownership, and workflows that
Al assistants and future agents depend on.

It continues to evolve as both an internal platform and
an industry-supported project used by thousands of
companies.

Al-powered engineering

With Backstage as a consistent system of record,

Al can understand internal systems, trigger workflows
safely, and support engineers in maintaining and
evolving services more efficiently.

© Spotify for Backstage

Product & Al
Innovation

Teaching a model to “speak” Spotify

At Spotify personalization is about
connecting the things listeners want
with the things creators make.

Entertained
Focused
Thrilled |
Motivated
Sleepy
Connected

Relaxed

Hip Hop

Sports Podcast
Daily Mix

Scenic Route

This is David Bowie
Coding Mode

Chill Mix

Evolution of personalization

Human Curated Predictive Generative

Recommendations
adapt to mood, intent,
and conversational input

Hand-picked playlists Machine learning
predicts and ranks what

you might like

Like what you’d hear
from a friend or editor

Produces on-demand
curated sets tailored to
each prompt

Based on listening
history + behavior

Example: Indie Chill
(human-made)

Example: Discover
Weekly

Example: “Recommend
me some podcasts to
go deeper into Spotify's
open source work”

Why LLMs Matter for
Personalization

LLMs unlock a new generation of personalized
experiences. They bring:

World knowledge
Reasoning ability
Natural-language understanding

Generative capability

This enables systems that can:

Understand moods, contexts, intents
Explain or justify recommendations

Power more dynamic and conversational experiences

Why Domain Adaptation &
Open-Weight Models

Why open-weight LLMs?

Flexibility to run and tune models ourselves
Transparent architectures
Deep integration into Spotify systems

But open-weight LLMs do not know:

Full breadth and depth of Spotify’s catalog

Our user preferences and listening patterns

Our content relationships, semantics, and metadata
How to generate or rank Spotify-specific items

So we adapt them to Spotify’s domain

We teach LLMs to “speak Spotify” by grounding them in our
catalog, interactions, and semantics, enabling them to generate,
understand, and reason over Spotify content.

Using Open-Weight Models for
Generative Recommendations

Open-weight LLMs give us world knowledge and flexible architectures.
Domain adaptation lets us turn them into models that truly understand Spotify:

Ground in Align with Optimize
our catalog behavior for goals

Teach models Spotify’s Adapt to how listeners Tune for discovery,
items, metadata, explore and engage satisfaction,
and relationships with content and engagement

Recommenders use embeddings. LLMs use
tokens. They also “speak” different formats.

Modern

recommender) i .
systems vector embeddings learned from interaction data

Represent users & items as dense continuous

Operate on discrete token sequences tied to

LLM
y a fixed vocabulary with learned embeddings

The mismatch These distinct data representations

are not directly compatible

LLMs need a way to understand Spotify’s
catalog, Semantic IDs make this possible.

track_49281
album_1032 Atomic IDs (Millions)

b 1032 s 1017 [02,0.8,..] SongA
track 496 oS\ 222

Q track_496 3 <100><25><305> album 878 albur 035 678, album 103
fp 2295 artist_1017 [02,08,.] e e L e e Semantic Tokens
. 'k 34 artist_ 99 ;@ "sck_“ 0% tragy ; album_w17 / (Thousan dS)

® artist_b54 \ |
o = \ 19Dy 222 3 wack A Tl pum Ot |
’n) @ C) e . Song B (similar to A) \ prise 90 wrack 222 "'fk—zzb 'y “
. track 1g "'*&54 L 2lb et a
. \ 2% g0 ertier o) <100> <200> <300>

2 0 - \ w0 ek 132 1017 artg
[0 ’ 0 81] 25 305 . \‘
‘\\ <50> <10> etc

A

Reusable Components

The problem: The solution:
Atomic item IDs Semantic IDs* Why it works:

m Large and sparse vocabulary m Convert item embeddings into m Preserves semantic relationships
m No semantic meaning (e.g., S B |l m Improves scalability, massive
track_491) m Similar items share token reduction in vocabulary size

components]]
P m Generalizes to unseen items:

m Cold-start problem
handle cold-start

*Recommender Systems with Generative Retrieval. NeurlPS 2023
Better Generalization with Semantic IDs: A Case Study in Ranking for Recommendations. RecSys 2024

How we adapt open-weight models
to Spotify using Semantic IDs

Make the model read, reason about, and e e

generate using Semantic IDs as naturally
as text.

1. Vocabulary expansion Original Vocab [0-128000] SIDs expansion [128001-132000]

Expand original LLM vocabulary with Example of alignment task:

Semantic IDs.

: . Target output:
. Semantic ID:

2. Alignhment Phase (LLM Frozen) [242, 42, 452, 355] - "How yoga helped me

Train Semantic ID token embeddings to align slow down and focus®

with language.

. . Example of fine-tuning task:

3. Fine-tuning Phase (LLM Unfrozen)

Semantic ID sequence: Target output:
[242,42,.], ... [3,121,..], ? — [242, 42,.], ... [3, 121,.], [2, 11,..]

Train on tasks involving Semantic IDs e.g.
next-item prediction.

How our domain-adapted
model generates

- Prompt: “I want to listen to a song similar to [100][20][23] for my
recommen d atl ons morning commute. Any suggestions?"
Receives a prompt mixing natural l

language and Semantic IDs.

Illlllll “Spen-weights Illlllll
. . open-weights
Predicts next most likely tokens, model

including Semantic IDs for catalog
items. l

Outputs may contain Semantic IDs, Response: “if you liked [100][20][23], | am sure you will love the

optionally mixed with natural hypnotic dream pop vibes of [100][20][31] to start off
language. your day. Let me know what you think!”
Language handles reasoning; Semantic : ,
.I:m l:- ‘:. — spotify:track:4fixebDZAVTo
IDs provide grounding in Spotify’s catalog.

Example for podcast recommendations Our model generates the nex

item as a Semantic ID, which

. . . is mapped to a podcast URI
A prompt is created using user history, PP P

metadata and editorial hypotheses

You are an expert in podcast
recommendations.

The user is from country: 'IT', age: Domain adapted

'36' and speaks the following open-weights

User opens their languages: 'IT, EN'. model
podcast feed

programmed to rank at) . .
position one the mostly Here are the user’s historical

likely podcast they interactions, ordered by timestamp:
would want to listen to ‘Semantic ID [26, 21, 2, 3],Semantic
ID [26, 2, 44, 22],Semantic ID [543,
1, 3, 4]°.

Semantic ID [532,13,345,1]

Your task is to recommend the next spotify:episode:GTdiaotf
item the user would like to stream. 635dtggu4536

Key results enabled by Semantic IDs

i Bt ©]

+8.8% +3.5% +173% BLEU +108%, +32% and +7%
new-show re-engagement for Artist — Playlist Hit Rate for Artist, Episode
discovery Title generation and Audiobook Search

(latest AB test results)

Q S 2

+16% Hit Rate Better natural +22%

for Episode Discovery language behaviour: Gain from

m Stronger performance on broad-intent queries multi-task tramlng

m Clearer, more fluent explanations for recommendations

Product Foundations for
Al-Driven Personalization

Adapted open-weight models

We build on open-weight LLMs as our flexible,
world-knowledge foundation.

We adapt them to Spotify’s catalog and behavior
patterns by teaching them to “speak Spotify”
through Semantic IDs.

Giving back to the community

Even as we leverage open-weight models, we share our
recipes, methods, and results with practitioners and

researchers, contributing back to the broader ecosystem.

Teaching Large Language Models to Speak Spotify:

How Semantic IDs Enable Personalization

Contextualized Recommendations Through Personalized

Narratives using LLMs | Spoti

Research

https://research.atspotify.com/2025/11/teaching-large-language-models-to-speak-spotify-how-semantic-ids-enable
https://research.atspotify.com/2025/11/teaching-large-language-models-to-speak-spotify-how-semantic-ids-enable
https://research.atspotify.com/2024/12/contextualized-recommendations-through-personalized-narratives-using-llms
https://research.atspotify.com/2024/12/contextualized-recommendations-through-personalized-narratives-using-llms

Looklng Ahead

Multi-angle open

Open-source Al at Spotify

01

Open-source
engineering platforms

Backstage provides an
openly shared, structured
knowledge layer that
powers Al assistance and
future Al agents for safe,
efficient engineering.

02

Adapted open-weight
models for product
innovation

We build on open-weight
LLMs and adapt them
to understand Spotify’s
catalog and behavior,
grounding them
using Semantic IDs,
domain signals, and
adaptation methods.

03

Sharing back with
the ecosystem

As we build with open
ecosystems, we contribute
back: publishing research,

open-sourcing methods,
sharing findings, and
collaborating with industry
and academia.

04

A multi-angle
approach to
open-source Al

Open platforms power Al
for development, adapted
models power Al for
product experiences,
together enabling Al that
understands our systems
and our catalog.

©RsD

Thank You

backstage.spotify.com

spotify.github.io

research.atspotify.com

